MACROPOROUS SILICON DEEP UV FILTERS

V. Kochergin¹, O. Sneh², M. Sanghavi¹, P.R. Swinehart¹

¹Lake Shore Cryotronics, Inc. Westerville, OH, 43082

www.lakeshore.com

²Sundew Technologies, LLC, 1619 Garnet St., Broomfield, CO 80020 www.sundewtech.com

Outline

- Introduction and Rationale
- Physical basis of filtering in Macroporous silicon membranes
- Macroporous Silicon chemistry and fabrication
- Brief process flow diagram
- ALD coating description
- Experimental results
- Conclusions
- IR and other applications

Existing technology

ABSORPTION-BASED

- Not suitable for deep UV range
- •Available materials absorb across entire deep UV spectrum

INTERFERENCE-BASED

- Limited width of the rejection bands;
- Poor physical longevity and lack of environmental stability (deep UV filters)
- Strong angular dependence of the pass band or rejection edge position

Transmission mechanism through an uncoated MPSi array

- Up to 700-900nm- transmission through the pore leaky waveguide array
- From 700-900nm to $\sim 5\Lambda$ transmission through the Si host waveguide array
- 5Λ and above- transmission through an "effective medium"

UV-visible range:

$$\alpha = f_0 \lambda^2 / d^3$$

$$\lambda_{-3dB} = \sqrt{\ln(2) \cdot \frac{d^3}{f_0 \cdot L}} \quad \lambda_{-20dB} = \sqrt{\ln(100) \cdot \frac{d^3}{f_0 \cdot L}}$$

Sharpness and position of the rejection edge are bounded!

LakeShore.

Formulas taken from [I. Avrutsky and V. Kochergin, Appl. Phys. Lett., 82, 3590 (2003)]

Coated MPSi arrays

- Leaky mode losses can be selectively adjusted.
- High rejection levels are predicted.
- Transmission down to far and extreme UV is possible.
- Spectral position and shape of passand rejection bands are independent on angle of incidence.
- Far fewer layers are necessary in order to achieve a comparable edge sharpness and rejection level than in common interference filters.
- Filters are much more environmentally and thermally stable.

Design (narrow bandpass filter)

Numerically calculated spectral dependences of the transmission through an MPSi membrane with a 19-layer pore wall coating designed as a narrow bandpass filter, with band centered at 300nm. The transmission in a) is plotted on a linear scale, while in b) is given on a logarithmic scale.

Process flow

Porous silicon etching

Interface:

- Porous Silicon
- (Electropolishing can occur)

n-Si: Current limitation by hole supply Illumination of the silicon is necessary.

Porous silicon etching (continuation)

V. Lehmann, H. Föll, *J. Electrochem. Soc.*, 137, 653 (1990)

V. Lehmann, *J. Electrochem. Soc.*, 140, 2836 (1994)

Macropores in silicon

- space charge region around macropores
- photo (or electrical) generation of holes
- holes are minority carriers

Multilayer coating of the pore walls

(LPCVD)

Coating of MPSi structure is demonstrated

- •Coating is not uniform
- •High stresses
- Very limited choice of materials

LPCVD pore wall coating and SEM images done by MEMS PI. www.memspi.com

Atomic layer deposition (ALD)

ALD - Atomic Level Precision - 100% Conformal Films

Nano-Layered Films

Ofer Sneh et al., Thin Solid Films 402 (2002) 248

Sundew Technologies, LLC - Proprietary For disclosure to BAE by LakeShore Cryotronics

LakeShore.

ALD (continuation)

ALD - Atomic Level Precision - 100% Conformal Films

- ALD is inherently 100% conformal
- The key is the layer-by-layer growth
- Transport time into high aspect ratio structures is fast (~100 msec/mm)
- The challenge is chemical delivery. For example, 8" DRAM wafer (70 nm generation) requires 6×10¹⁸ precursor molecules per dose !!!
- An Ultra High Area (UHA) substrate such as a porous silicon membrane requires 6×10¹⁹ precursor molecules per dose !!! ⇒
 87 grams of trimethylaluminum per 1 µm of film! (\$50 per technical grade precursor)

Several dozens of different coatings (metals, semiconductor and dielectrics) have been demonstrated

Manual LL
chamber

Gas box

QDP40

Instruments

Sundew Technologies

SMFD - ALD: 8" wafer prototype

Coating uniformity

Good quality layers (granular structure was not observed)

Better than 5% for Al₂O₃

→

82nm

HfO₂ trials were not successful

Nanolaminated stacks and refractive index engineering

5-layer TiO2/Al2O3 ALD coating (ALD)

7-layer TiO2/Al2O3 ALD coating (ALD)

Wide blocking, higher than 5 OD

Multilayer Coated Pores

Near field transmission efficiency exceeds 50% within the pass

band

Far field transmission efficiency exceeds 30% within the pass

band

Optical testing of MPSi layer with multilayer coating 0.20 _____

Conclusions

- •Pore formation process meet the requirements.
- •Feasibility of ALD pore wall coating is demonstrated for Al2O3 single layer and a Al₂O₃/TiO₂ nanolaminated stack. Attempts at HfO₂ deposition have failed so far. No functional filter fabricated.
- •Good agreement between theory and experiment. Good understanding of what's happening and what needs to be done.
- •For further progress, an ALD machine <u>at Lake Shore</u> is required.

IR porous mesoporous silicon filters and mirrors

Consist of a porous silicon multilayer composed of alternated high-porosity/low porosity layers.

IR long wave pass filters

- •Random MPSi layers
- •Light <u>scattering</u> is the key
- •Used as a part of almost any band-pass filter

Scattering by applied particles

Scattering by random pores

IR long wave pass filters (continuation)

Glancing angle reflection, 100mm wafer

Normal to wafer surface

Pore layer cross section

UV polarization components

